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Abstract— Instrumented ultrasonic tracking is used to
improve needle localisation during ultrasound guidance
of minimally-invasive percutaneous procedures. Here, it is
implemented with transmitted ultrasound pulses from a
clinical ultrasound imaging probe that are detected by a
fibre-optic hydrophone integrated into a needle. The de-
tected transmissions are then reconstructed to form the
tracking image. Two challenges are considered with the
current implementation of ultrasonic tracking. First, track-
ing transmissions are interleaved with the acquisition of B-
mode images and thus, the effective B-mode frame rate is
reduced. Second, it is challenging to achieve an accurate
localisation of the needle tip when the signal-to-noise ratio
is low. To address these challenges, we present a frame-
work based on a convolutional neural network (CNN) to
maintain spatial resolution with fewer tracking transmis-
sions and to enhance signal quality. A major component of
the framework included the generation of realistic synthetic
training data. The trained network was applied to unseen
synthetic data and experimental in vivo tracking data. The
performance of needle localisation was investigated when
reconstruction was performed with fewer (up to eight-fold)
tracking transmissions. CNN-based processing of conven-
tional reconstructions showed that the axial and lateral
spatial resolution could be improved even with an eight-
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fold reduction in tracking transmissions. The framework
presented in this study will significantly improve the per-
formance of ultrasonic tracking, leading to faster image
acquisition rates and increased localisation accuracy.

Index Terms— Ultrasonic needle tracking, interventional
devices, deep learning, in vivo imaging

I. INTRODUCTION

Ultrasound imaging is frequently used for real-time guid-
ance of minimally-invasive percutaneous procedures in in-
terventional pain management and regional anaethesia [1],
interventional oncology [2] and fetal medicine [3]. During
these procedures, a needle is inserted into the body and
guidance is achieved through alignment of the needle tip with
the ultrasound imaging plane. Deviations from the imaging
plane and uncertainties about the location of the needle tip
can lead to significant complications such as damage of the
nerves and pneumothorax during nerve block insertions [4]
and, miscarriage or preterm birth during umbilical cord blood
sampling [3] and multifetal pregnancy reduction, where needle
tip movements with high precision are required. In fetal
medicine, an application considered in this study, percutaneous
ultrasound-guided uterine access can be particularly challeng-
ing when the mother is obese, when there is an amniotic
volume that is less than expected for the gestational age
(oligohydramnios), and when the practitioner is inexperienced.

Several approaches have been proposed to improve needle
localisation and visualisation that can be classified to image
processing, modifications to the needle to make it more
echogenic and integration with external sensors, changes to
ultrasound formation, motion analysis and machine learning
[5]. Instrumented ultrasonic tracking involves the integration
of a medical device into a needle or catheter which, depending
on the configuration, can receive/transmit ultrasound pulses in
concert with ultrasound transmission/reception by an external
ultrasound imaging probe. Such instrumented ultrasonic track-
ing methods have received significant academic [6]–[11] and
commercial [12] attention.

In this study, we utilise a custom, newly-developed instru-
mented ultrasonic tracking system [6] that relies on recep-
tion of ultrasound pulses by a fibre-optic hydrophone (FOH)
integrated into a needle. Tracking transmissions from the
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ultrasound probe are interleaved with the acquisition of B-
mode ultrasound images. The received ultrasound pulses are
then reconstructed to form the tracking image.

Two particular challenges are considered with this im-
plementation of ultrasonic tracking. First, if transmissions
performed for tracking are distinct from the time periods
used for transmission/reception in B-mode, they can reduce
the effective B-mode imaging frame rate. Second, it can be
challenging to obtain accurate localisation of the needle tip if
the signal-to-noise (SNR) ratio of the tracking image is low.
Averaging over multiple tracking images reduces the frame
rate and can be confounded by movement artifacts.

Recently, with the advent of Deep Learning (DL) [13],
convolutional neural networks (CNNs) have been applied to
accelerate reconstruction and to improve image quality in
many different medical imaging modalities [14]–[24]. Here,
we hypothesised that a CNN is suitable for processing of
ultrasound tracking images: to maintain the resolution and
improve needle localisation when reconstruction is performed
with fewer transmissions for each tracking image.

Our contributions in this study can be summarised as fol-
lows. We developed a DL framework based on convolutional
neural networks for instrumented ultrasonic tracking that can
be reliably employed for in vivo applications. Our approach
can be separated into four components: First, we formulated
ultrasonic tracking as an image enhancement problem in the
image domain considering up to eight-fold subsampling of the
channel data prior to reconstruction. Second, we developed
a realistic simulation pipeline to generate synthetic training,
validation and testing data to characterise the performance of
needle visualisation and localisation of the trained network.
Third, we trained the network solely on synthetic data and
evaluated its performance on unseen synthetic testing data and
in vivo data obtained from a preclinical fetal sheep model.

This paper is organised as follows. Initially, conventional
reconstruction for instrumented ultrasonic tracking and formu-
lation as a learned image enhancement problem is introduced.
Next, the simulation pipelines to generate synthetic data are
described, and the experimental ultrasonic tracking system
used to acquire in vivo data is presented. We describe the
evaluation metrics and we present quantitative results for
synthetic and in vivo data. Finally, we discuss the findings
and potential limitations of the current approach and provide
an outlook for future steps.

The application of Deep Learning to ultrasound imaging
[25], [26] and to related modalities [27]–[30] is a burgeoning
field. Deep neural networks have been proposed to enhance B-
mode ultrasound images to improve interpretation of anatom-
ical structures [31] or to reconstruct images directly from
channel data without beamforming [32]–[35]. In the context
of enhanced needle visualisation and localisation, there is a
wide variety of machine learning approaches in the literature
[36], [37]. The majority of these approaches rely on identifying
the location of the needle tip in B-mode images that do not
involve information from external sensors. In the study of
Mwikirize et al., a region-based CNN was used for needle
detection in 2D B-mode images [38]. The localisation accuracy
was significantly improved when temporal information was

included in the network architecture [39]. In a follow-on study,
needle localisation was achieved using patch classification
and semantic segmentation from extracted 2D orthogonal
images of a 3D volume [40]. Segmentation for multiple needle
localisation during prostate brachytherapy was achieved using
U-net variations [41], [42].

The computational problem of point source localisation
in photoacoustic imaging is directly related to the recon-
struction of instrumented ultrasonic tracking images obtained
with transmissions from individual transducer elements, via
reciprocity principle (c.f. Sec. II-A) [6]. Deep Learning meth-
ods have shown promise with identifying point sources in
photoacoustic imaging [43]. Allman et al. [44] proposed a
method to localise point targets and remove reflection artifacts
that have a similar appearance using a method based on region-
based CNN. Similarly, Johnstonbaugh et al. [45] proposed
to use an encoder-decoder CNN to localise point sources
in the presence of strong optical scattering in deep tissue.
Finally, for localisation of up to four point sources, Yardano
et al. [46] proposed a deep neural network consisting of a
shared encoder and two parallel decoders. We note that all
the previous approaches were based on the localisation of the
point sources directly from the channel data without applying
beamforming.

To the best of our knowledge, this study is the first to
explore the use of DL for ultrasonic tracking using integrated
sensors, with a novel framework based on CNNs for train-
ing, evaluation and application to in vivo ultrasonic tracking
images.

II. METHODS

A. Ultrasonic tracking
1) Conventional reconstruction for ultrasonic tracking: The

instrumented ultrasonic tracking paradigm used here includes
a needle with an embedded ultrasound receiver (i.e. FOH)
that detects transmissions from an ultrasound imaging probe
(Fig. 1; Application). For the formation of a 2D ultrasonic
tracking image, each transducer element emits a signal se-
quentially, where the FOH within the imaging plane records
the time of flight from the transducer element to the needle
tip. The recorded time-of-flight data is then combined for all
elements and forms the tracking measurement (i.e. channel
data) given by g(r, t), where r and t denotes the transducer
element location and time, respectively. Using the principle of
reciprocity, the ultrasound signal generation is then interpreted
as a pressure wave emitted from a point source p0 located at
the needle tip such that:

Ap0 = g̃, (1)

g̃ = g + δg, (2)

where A models the ultrasound wave propagation and
δg is the noise term. A conventional tracking image, is an
approximation of p0 that is considered here as a low-quality
tracking image pLQ due to limited-view ultrasound detection,
noise and undersampling, can then be recovered by Fourier
beamforming as:



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3126530, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

3

Fig. 1. Main components of the proposed framework for deep learning (DL)-based enhancement of instrumented ultrasonic tracking images.
Top row: Synthetic training data generation using FOCUS for modelling of ultrasonic tracking data acquisition. Middle row: Synthetic testing data
generation using k-Wave for acoustic wave propagation to evaluate the performance of the trained network. Bottom row: application of the trained
network with synthetic data to unseen experimental in vivo ultrasonic tracking data obtained from a preclinical model. Note: Envelope detection has
been performed to the channel data only for illustration purposes. Subsampling was performed in the elements direction.

F†g̃ = pLQ. (3)

Here, F† performs the reconstruction in the frequency domain
using fast Fourier transforms (FFT) and relies on a periodically
spaced transducer array [47]. In this study, we use the com-
putationally efficient implementation of this algorithm found
in the k-Wave toolbox [48].

2) Learned image enhancement: The number of tracking
measurements and the measurement noise limit how accurately
a point source p0 (i.e. the needle tip) can be resolved in
conventional image reconstructions. Here, p0 is a binary image
with the value of one at only one pixel corresponding to the
needle tip, and zero elsewhere. From that standpoint, a higher
number of tracking measurements is beneficial for increas-
ing ultrasonic tracking image quality. However, this increase
comes at the expense of acquisition time. Furthermore, even
with many tracking measurements, the limited-view geometry
limits the accuracy with which locations deep within the target
can be resolved. Therefore, a high-quality image needs to be

recovered to accurately determine the needle tip position. This
leads to the image enhancement problem considered in this
study.

We formulate the problem of recovering the accurate ultra-
sonic tracking image pHQ from the conventional low-quality
reconstruction pLQ as a learning problem. Our aim is to train
a CNN, Λ, with parameters θ, such that Λθ(p

LQ) ≈ pHQ. That
means we have to find an optimal set of parameters θ∗ that
is:

θ∗ = arg min
θ

N∑
i=1

‖Λθ(pLQ
i )− pHQ

i ‖1. (4)

We choose to train Λ using the L1-loss as it is more
robust to outliers [49]. For pLQ, we consider a conventionally
reconstructed image which can occur from full or subsampled
channel data. To synthesize an ideal image of the needle
tip, we define pHQ as the point source p0 convolved with a
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Gaussian kernel:
pHQ := Gσ ∗ p0. (5)

where Gσ is a 2D Gaussian smoothing kernel with standard
deviation σ. Using a Gaussian kernel is more stable than
simply learn a single pixel. As such, we can define the
resolution that we are aiming to achieve depending on the
kernel size.

A major part of our proposed framework relies on the
generation of realistic in silico training data, such that the
trained network can be applied directly to the desired in vivo
application without the need for retraining. Thus, the training
data generation is of essential importance, which we describe
in detail below.

B. Generating realistic synthetic data
1) Training and validation data: For the generation of train-

ing and validation data, we used the FOCUS ultrasound
simulator [50], [51] (Fig. 1; top row), which is particularly
attractive as it uses a computationally efficient numerical
implementation of the spatio-temporal impulse response of
piston transducers in a homogeneous medium (modelled as
water without attenuation and a uniform sound speed of
1500 m/s). To model the tracking transmissions from the
ultrasound probe, 128 rectangular planar piston transducers
(measuring 0.3 mm laterally by 6 mm elevationally to match
the experimental setup, c.f. Sec. II-C) were distributed equidis-
tantly across the transducer aperture (measuring 38.4 mm
laterally). These transducers were individually excited, where
the temporal profile of the transducer excitation was modelled
as a tone burst, the centre frequency (6.5 MHz) and duration (3
cycles) of which were adjusted to match the power spectrum of
the experimental data. For ultrasound reception, the FOH was
modelled as an ideal point receiver with an infinitesimal spatial
extent and a uniform frequency response, which corresponds
to a single voxel measuring 0.3 mm. The ultrasound time
traces detected by the FOH for each transducer at the position
(r, t) were computed sequentially to form the channel data
g, resulting in a 2D array of 128 x 2048 samples with a
corresponding sampling frequency of 100 MHz.

The training set is given by N = 1000 and the validation
set is given by N = 200 high- and low-quality image pairs
{pHQ
i , pLQ

i }Ni=1 in which, the point source locations ranged
from −10 to 10 mm laterally and from 10 to 25 mm axially.

To create pLQ, we started with the synthetic channel data g
from 128 transducer elements and we added Gaussian noise δg
with zero mean and standard deviation (σ = 0.06) estimated
from experimental preclinical in vivo data using a region
of interest (3×12 mm) that contained only noise. We then
subsampled the channel data 8×, i.e. we only retained data
from 16 equidistantly spaced transducer elements and added
zeros to the remaining 112 transducer elements. The standard
deviation of the noise of the full-channel generated data was
varied between 0.5× and 3× of that measured experimentally
before subsampling to generate a wide range of training data.
The experimental channel data had an average SNR of 17.5;
the full-channel generated data had SNR values that ranged
from a minimum of 10.5 to a maximum of 56.1. Finally,

to obtain pLQ, the noisy and subsampled channel data was
reconstructed as in Eq. 3, followed by envelope detection
via the Hilbert transform. Using the Hilbert transform, we
restricted the solution space from 0-1 so that convergence is
achieved faster during training.

The reference ground truth images, pHQ, were generated
following Eq. 5 by taking the point FOH receiver location
p0 (i.e. the needle tip) and convolving it with an anisotropic
Gaussian kernel (σ =

[
4, 2
]

pixels), which resulted in FWHM
of 0.14 mm and 1.45 mm for the axial and lateral resolution
respectively. We chose an anisotropic Gaussian kernel with a
larger width in the axial dimension, to account for the unequal
axial and lateral sampling rates in the 2D tracking images.

2) Testing data: We generated the testing data with the k-
Wave toolbox. Unlike FOCUS, k-Wave is a full-wave method
based on a pseudo-spectral approach [52], which requires the
entire volume between a source and detector to be discretised.
To limit the computational requirements, k-Wave simulations
were performed in 2D at the expense of a small reduction in
accuracy, which was used to both avoid training bias and assess
the robustness against small inaccuracies in the numerical
model. We directly simulated Eq. 1 that represents an equiv-
alent but reciprocal tracking experiment to the training data.
To generate channel data, ultrasound transmission of a point
source, modelled as a single voxel after spatial smoothing,
resulting in a full-width at half-maximum (FWHM) of 0.74
mm, was propagated through a homogeneous medium and
detected by a linear array with 128 rectangular transducers.
Acoustic wave propagation was performed on an isotropic
grid with 0.3 mm spacing (measuring 60 mm axially by 38.4
mm laterally) and sampling frequency of 50 MHz to limit
computational requirements. As a further test of robustness
and bias avoidance, a uniform sound speed of 1540 m/s was
used. Subsequently, reconstruction using the FFT-based imple-
mentation of Eq. 3 and envelope detection were performed as
described previously.

To create the synthetic testing set, a point source was
translated along a grid laterally from 7.25 to 32.5 (step size:
2.5 mm) and axially from 5 to 55 mm (step size: 5 mm)
respectively. Additionally, Gaussian noise was added to the
channel data prior to reconstruction, resulting in different SNR
values, which were varied from 3 to 21 in steps of 3. The SNR
was estimated using the maximum amplitude value of full
channel data divided by the standard deviation of a background
region that contained no appreciable signal. The channel data
were then subsampled 2×, 4× and 8×, and reconstruction
was performed using Eq.3. Subsampling was performed with
zeroing, as previously described. For each subsampling case,
847 images were generated that were only used for inference
and excluded from the training set.

Although the needle itself was not modelled explicitly in
this study, variations in its position within the grids used for
training and testing were captured implicitly; it was assumed
that these positions were all attainable by the needle tip.

C. Experimental setup and data
1) Ultrasonic tracking system: The ultrasonic tracking sys-

tem consisted of a clinical ultrasound scanner (Sonix MDP,
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Fig. 2. Evaluation of the trained network using synthetic testing data
generated with k-Wave. Conventionally reconstructed (top row), deep
learning-enhanced (middle row) and total variation denoised (bottom
row) images obtained using full or subsampled channel data. The point
source (i.e. needle tip) is located at 40 mm depth. Full channel data had
an initial SNR of 3.

Analogic Ultrasound, Richmond, BC, Canada) with a linear
array probe (L9-4/38, 128 elements, 9–4 MHz Bandwidth, 300
µm pitch, Analogic Ultrasound, Richmond, BC, Canada), and
a FOH for reception of ultrasound pulses. The FOH comprised
of a thin film Fabry-Pérot interferometer placed at the distal
end face of a single-mode fibre and was integrated into a 20-
gauge needle cannula. The ultrasound scanner was operated
in research mode, which allowed for control of the transducer
element transmissions, and corresponding output triggers that
were used for synchronising FOH signal acquisitions with
respect to those transmissions. During tracking, each of the
128 transducer elements was excited individually to emit a
divergent pressure field. The received signals were recon-
structed with the FFT-based implementation of Eq. 3 to obtain
the tracking image followed by envelope detection via the
Hilbert transform. An imposed delay to limit the data transfer
rate between B-mode and tracking acquisitions resulted to an
effective frame rate of 1 Hz. The ultrasonic tracking system
and the needle geometry in this study were chosen for their
relevance to a broad range of percutaneous procedures. More
details about the implementation of the ultrasonic tracking
system can be found in [6].

2) In vivo data: To evaluate the performance (c.f. Sec. II-F)
of the trained network for in vivo clinically-realistic conditions,
insertion of a 22 Gauge needle (Becton Dickinson, UK) into
the heart of a fetal sheep in mid-gestation under ultrasound
guidance was performed. The procedure was conducted in
accordance with the U.K. Home Office regulations and the
Guidance for the Operation of Animals (Scientific Procedures)
Act (1986). Ethics approval was provided by the joint animal

studies committee of the Royal Veterinary College and the
University College London, UK.

D. Network implementation
For the network implementation, we used a simple modifi-

cation of the established residual neural network (ResNet) [53]
architecture following [49] due to its recent success in similar
tasks such as super-resolution. The particular architecture for
our study consists of 16 residual blocks, each consisting of
2 convolutional layers with width of 64 channels and 3×3
convolutional kernels and biases, with a rectified linear unit
as nonlinearity between the 2 convolutional layers. We note
that convolutions act locally and we found that training on
smaller patches instead of the full image size can achieve faster
convergence. Thus, we trained with patches of 64×64 pixels,
which roughly equals the receptive field of our network, that
were randomly extracted from the pairs in the training set.
Implementation of our network was performed in Python using
TensorFlow v1.13 and Keras v2.2.4. Training was done for
80 epochs that maximised the peak SNR in the validation set
using ADAM optimizer [54] (initial step size: 0.001; minibatch
size: 16 patches) and an Nvidia GTX 1080Ti GPU with 12
GB memory.

E. Comparison method
We further evaluated the performance of the proposed DL

framework by comparing it to a classic analytical method for
image enhancement, namely total variation (TV) denoising
[55]. That is, we seek a reconstruction as the minimiser of
the following penalty functional

p∗ = arg min
p
‖p− pLR‖22 + α‖∇p‖1. (6)

Here, the first term ensures closeness to the initial reconstruc-
tion and the second term, the total variation penalty, promotes
sparsity in the gradients, i.e. it favours piece-wise constant
reconstructions, while edges are preserved. The parameter
α > 0 balances both terms, where a larger parameter will
enforce higher regularity in the reconstruction. A uniform
value (α = 1.0) that performed best on average for all
subsampling cases and SNR values was chosen.

We chose a total variation image enhancement as a compar-
ison method for two reasons. First, the obtained reconstruc-
tions exhibit comparable features as the data-driven approach,
achieving a high SECR. Second, computationally efficient
algorithms are available [56] to solve Eq. 6. In our case, a
proximal gradient descent scheme was used.

Finally, the computation times of applying the trained net-
work (i.e. inference) and TV denoising method were calculated
by averaging 100 instances.

F. Evaluation protocol and metrics
Three metrics were used to evaluate the performance of

the trained network. First, we measured the spatial (i.e. axial
and lateral) resolution with which the needle tip could be
visualised. A bounding box (3 × 12 mm, axial & lateral)
centred around the maximum amplitude of the needle tip
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Fig. 3. Spatial resolution assessment: Average and standard deviation values of axial (a) and lateral (b) resolution that correspond to conventional
reconstructions (first column) and deep learning-enhanced images (second column) from the synthetic testing dataset. High consistency was
observed for both axial and lateral resolution when the trained network was applied to conventionally reconstructed images.

obtained from the ground truth image was used, and maximum
amplitude axial and lateral profiles were obtained to calculate
the corresponding FWHM values.

Second, as a measure of the extent to which the ultrasonic
tracking image was spatially localised (i.e. the amount of the
image energy concentrated around the actual needle tip is
quantified), we defined the signal energy concentration ratio
(SECR) as:

SECR(p) =

∑
i(p

source
i − pback)2∑
i(pi − p

back)2
, (7)

where psource is a 3 × 3 mm bounding box centred around
the maximum amplitude of the needle tip obtained from the
ground truth image, pback is the mean value of a region (4.5×
18.5 mm) that contains only background noise and is kept
fixed for all the images, and p corresponds to either pLQ or
pHQ, as required. The SECR values, which are bounded to the
interval

[
0, 1
]
, are reported as percentages.

Third, the localisation error of the needle tip in the synthetic
testing dataset was measured. The needle tip deviation is
calculated as the 2D Euclidean distance between the true
needle tip location (obtained from the ground truth image)
and the needle tip location obtained using the maximum
intensity. For each needle tip location, the mean, standard
deviation and root-mean-square error (RMSE) are calculated.

III. RESULTS

A. Synthetic data
A point source (i.e. needle tip) from the synthetic testing set

which is located at 40 mm depth with initial full channel data
SNR 3 is shown in Fig. 2. With conventional reconstruction, a

worsening of the spatial resolution as we move deeper into the
tissue is a typical phenomenon due to limited-angle viewing
of the ultrasound probe. Reconstruction from subsampled
channel data distorts the spatial resolution and increases the
background noise as fewer tracking transmissions are used
(Fig. 2; top row). Passing these images through the trained
network, the background noise is filtered-out, and the image
quality and spatial resolution are clearly improved for all
subsampling scenarios (Fig. 2; middle row). Filtering these
images using a classical TV denoising method (Fig. 2; bottow
row) results in enhancement of the image quality, although the
spatial resolution is increased. Particularly, the SECR varies
from 4.3 to 0.8% when conventional reconstruction is used,
which is significantly increased from 99.6 to 96.9% when
the trained network is applied. TV denoising results to an
improvement of SECR from 81.1 to 73.6%. In contrast, the
spatial resolution was improved after post-processing using
the trained network. In particular, for fully sampled data,
the axial resolution was decreased from 1.01 to 0.31 mm
and the lateral resolution from 4.79 to 1.92 mm - to update
them, respectively. Compared to the network, TV denoising
resulted in higher axial and lateral resolution values (i.e.
1.18 mm and 2.67 mm). With 8× subsampling, the DL-
enhanced image maintained improved spatial resolution (axial:
0.28 mm; lateral: 1.66 mm), although it was not possible to
measure it from the conventional image due to poor SNR and
despite the large bounding box chosen (c.f. Sec. II-F). For
the same reasons, no spatial resolution measurements were
possible from any subsampled conventionally reconstructed
images. Further improvements were observed for less severe
subsampling, despite training being performed exclusively on
8× subsampled data.

To quantify the performance of the trained network in the
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TABLE I
EVALUATION OF THE DEEP LEARNING FRAMEWORK USING THE SYNTHETIC TESTING DATASET AND THE SIGNAL ENERGY CONCENTRATION RATIO

(SECR) AS A PERFORMANCE METRIC. CR: CONVENTIONAL RECONSTRUCTION, CR+DL: CONVENTIONAL RECONSTRUCTION AND DEEP

LEARNING-BASED POST-PROCESSING, TV: TOTAL VARIATION.

SECR range Full data 2× Subsampling 4× Subsampling 8× Subsampling
(%) CR CR+DL TV CR CR+DL TV CR CR+DL TV CR CR+DL TV

0 – 20 29.4 0 0 42.86 0 0 67.65 0.24 0 97.17 1.77 0
20 – 40 29.63 0 0 35.77 0 0 32.35 0 0 2.83 0 0.24
40 – 60 28.93 0 9.09 21.37 0 9.09 0 0 9.56 0 0.24 10.39
60 – 80 12.04 0 25.86 0 0 26.21 0 0 26.68 0 0.59 42.38

80 – 100 0 100 65.05 0 100 64.7 0 99.76 63.75 0 97.4 46.99

TABLE II
LOCALISATION ERROR USING THE SYNTHETIC TESTING DATASET. NEEDLE TIP DEVIATION IS CALCULATED AS THE 2D EUCLIDEAN DISTANCE

BETWEEN THE TRUE TIP LOCATION (OBTAINED FROM THE GROUND TRUTH IMAGE) AND THE TIP LOCATION OBTAINED USING THE MAXIMUM

INTENSITY. FOR EACH LOCATION, THE MEAN, STANDARD DEVIATION (STD) AND ROOT-MEAN-SQUARE ERROR (RMSE) ARE CALCULATED. RMSES

FOR LATERAL (RMSEx) AND AXIAL (RMSEz) DIMENSIONS ARE PROVIDED. CR: CONVENTIONAL RECONSTRUCTION, CR+DL: CONVENTIONAL

RECONSTRUCTION AND DEEP LEARNING-BASED POST-PROCESSING.

Full data 2× Subsampling 4× Subsampling 8× Subsampling
CR CR+DL CR CR+DL CR CR+DL CR CR+DL

MEAN (mm) 0.044 0.085 0.055 0.077 0.552 0.082 2.224 0.372
STD (mm) 0.075 0.133 0.085 0.124 4.630 0.125 9.296 3.650

RMSE (mm) 0.087 0.158 0.101 0.146 4.660 0.149 9.553 3.666
RMSEx (mm) 0.079 0.155 0.091 0.142 1.758 0.146 3.069 1.276
RMSEz (mm) 0.036 0.031 0.044 0.031 4.316 0.031 9.047 3.437

spatial resolution reduction, we used the synthetic testing set
and measured the FWHM of each conventionally reconstructed
and DL-enhanced image. We should note that the images, in
which we were able to compute the FWHM, were grouped
and averaged according to their depth location (Fig. 3). An
image was excluded from the analysis if either the axial or
the lateral resolution couldn’t be measured due to low SNR.
Therefore, for conventional reconstruction, 1.89% of fully
sampled images, and 6.73%, 21.49% and 42.38% of 2,4,8×
subsampled images were excluded. On the other hand, for DL-
enhanced images, 0.24% and 1.77% of only 4,8× subsampled
images were excluded, which corresponded to images with
SNR 3. All images were included when full channel and
2× subsampled data were used. An improvement in axial
resolution was observed when the trained network was applied
(Fig. 3a; top row). Additionally, higher consistency among
the resolution values as evident by lower standard deviations
across the different subsampling scenarios was noticed with
a maximum standard deviation value of 0.09 mm in the
DL-enhanced images (Fig. 3a; bottom row). For the lateral
resolution (Fig. 3b; top row), a reduction was achieved after
the trained network was applied; however, it was smaller than
the reduction in axial resolution values. High consistency was
maintained with a maximum standard deviation value of 0.62
mm, which occurred at 8× subsampling and at the highest
depth of 55 mm in the DL-enhanced images (Fig. 3b; bottow
row).

SECR was used to quantify the enhancement of the trained
network and the TV denoising on the image quality (Table
I). Overall, by using the trained network, the image quality
was greatly improved and the vast majority of post-processed
images had an SECR of >97.5%. It was observed that
low SECR values <20% in the DL-enhanced images were

associated with unsuccessful identification of the needle tip
and no spatial resolution measurements were possible. In
table I, all of the DL-enhanced images obtained from full
channel data reconstructions had a SECR value within the
range of 80 − 100%, while no conventional reconstruction
had such a value. Additionally, a significant improvement in
SECR was noticed for the subsampled cases. When 2× to
8× subsampling was applied, 100, 99.76 and 97.4% of DL-
enhanced data had a SECR value of 80− 100%, respectively.
Low values <20% of SECR in DL-enhanced images corre-
sponded to high depths and SNR of 3. In contrast, 2× and 4×
subsampled conventional images had no SECR value >60%
and >40%, while 97.17% of 8× subsampled conventional
images had an SECR value <20%. TV denoising improved the
image quality of the conventionally reconstructed images and
provided comparable results with the DL-enhanced images.
Although the SECR values were lower compared to the values
derived from DL-enhanced images, no TV denoised image had
an SECR value from 0−20%. By using 2D tracking images of
1948×128, inference of the trained network was performed in
0.15 s, while the processing time for TV denoising was 2.15
s, respectively.

Finally, using the synthetic testing dataset and having access
to the ground truth location of the needle tip, the tracking
accuracy was evaluated (Table II). In fully sampled and
2× subsampled data, the localisation error exhibited similar
performance in conventionally reconstructed and DL-enhanced
images; the maximum mean error was 0.085± 0.133 mm and
the RMSE 0.158 mm. However, when higher subsampling
was applied (i.e. 4× and 8×), the localisation error of the
conventional reconstructions was significantly increased. With
4× subsampling, conventional reconstructions had a mean
error of 0.552 ± 4.630 mm while the DL-enhanced images



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3126530, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

8

Fig. 4. Application of the trained network to process an in vivo needle tracking insertion. Conventional reconstructed, deep learning-enhanced and
TV denoised images with subsampling scenarios are shown. The effect on the spatial resolution and image quality improvement of the DL-based
post-processing is quite prominent and outperforms a traditional TV denoising method.

maintained a lower mean error of 0.082±0.125 mm, which is
similar to the one obtain with fully sampled images. Further
to this, RMSE had a similar value (0.149 mm) to the fully
sampled data compared to 4× subsampling, which was a 3-
fold higher (4.660 mm). In conventional reconstructions, the
RMSE in the axial dimension (i.e. RMSEz) seemed to have
the bigger contributions in such an error increase (4.316 mm),
compared to the RMSEx obtained in the lateral dimension
(1.758 mm). With 8× subsampling, the mean localisation error
increased for both conventionally and DL-enhanced images;
however, after the trained network was applied, the mean error
was reduced from 2.224 ± 9.296 mm to 0.372 ± 3.650 mm.
Similarly, the RMSE was reduced from 9.553 to 3.666 mm
when the images were passed through the trained network.

B. In vivo data

As a demonstration of the network’s performance on unseen
in vivo data, ultrasonic tracking data from a 22 Gauge needle
with an integrated FOH placed percutaneously into the right
ventricle of a fetal sheep under general anaesthesia were
acquired (Fig. 4). The needle tip was visible in the B-mode
ultrasound images, although obtaining its locations accurately
by visual inspection alone was challenging due to the depth
of the fetus within the uterine cavity of the ewe. When
the trained network was applied, prominent improvements
in spatial resolution and removal of background noise, as
compared to conventional reconstruction, were observed (Fig.
4). In particular, the axial resolution was improved by at

least 1-fold; furthermore, for all full and subsampled data
scenarios, the SECR reached 99.99%. With TV denoising,
there were improvements in the axial resolution relative to
the conventional reconstructions. However, such improvements
were lower compared to the network. Similarly, TV improved
the image quality in conventional reconstructions, although the
achieved SECRs were lower compared to the applied network.

IV. DISCUSSION

We developed a DL framework that comprised a CNN
and synthetic training data to process reconstructed ultrasonic
needle tracking images. This was, to our knowledge, the first
application of DL to processing in vivo ultrasonic needle track-
ing images. Using the framework developed here, constancy
of axial and lateral resolution across depth was achieved with
subsampling up to 8× fewer transmissions for tracking. This
result will lead directly to faster ultrasound imaging using
frames that are interspersed with the more rapidly-acquired
tracking frames.

The use of synthetic data is beneficial within the context
of ultrasonic tracking, as it removes the burden of acquiring
experimental data with manual annotation. Apart from being
time-consuming, manual annotation introduces a further chal-
lenge to accurately identify the needle tip when there can be
low visibility and uncertainty about its true location; defining
a ground truth in ultrasonic tracking methods remains an open
problem [5].

In contrast to other studies that localise the needle tip or
reconstruct the image directly from channel data, we chose to
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formulate the learning task in the image domain for several
reasons. First, the SNR of the reconstructed image is expected
to be higher. This follows from the fact that the noise ampli-
tude after reconstruction is preserved, but the reconstructed
point source (i.e. needle tip) is a sum over the measured
signals [52]. Second, by formulating the learning task in image
domain, we benefit from essential properties of a CNN, namely
translation invariance and independence of image size.

Compared to conventional tracking image reconstruction
[6], [9], the framework presented here has strong potential to
improve needle identification. Using synthetic testing images
from 8× subsampled channel data, the percentage of cases in
which the FWHM could not be measured due to poor SNR was
significantly reduced. Processing of in vivo tracking images
using Deep Learning outperformed the classical TV denoising
framework, both in terms of image quality (spatial resolution
and SECR) and computation time.

There are several ways in which this work can be extended.
First, the generation of synthetic data assumed a homoge-
neous non-attenuating medium with single sound speed for
ultrasound wave propagation and detection. Variations in the
acoustic attenuation and the sound speed of the imaged
medium to improve robustness could readily be incorporated
using k-Wave, and into the synthetic training dataset. Sec-
ond, the current framework may enhance out-of-plane signals
that could correspond to a false needle tip position. Further
studies to assess the impact of reflection and diffraction from
hyperechoic structures such as bone [44] and brachytherapy
seeds [57] are required. Third, the robustness of needle tip
tracking could be improved by incorporating multiple tracking
frames, for instance by recurrent neural networks or a filter-
ing approach in a Bayesian framework. Fourth, the current
framework could be extended to localise multiple point sources
[44] for systems with multiple ultrasonic sensors. Finally, to
calculate the localisation accuracy directly to in vivo tracking
images, the ground truth of needle tip location data could be
obtained with the use of motorised stages [9].

The Deep Learning framework presented in this study has
strong potential to improve the frame rate and needle tip
identification accuracy in ultrasound tracking. This combi-
nation of improvements will have broad applicability across
multiple clinical fields, leading to improvements in procedural
efficiency and reductions in the risk of complications.
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