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Abstract: Focusing light through a multimode fibre (MMF) has attracted significant research
interest, mainly driven by the need for miniature endoscopes in biomedicine. In recent years,
digital micromirror devices (DMD) have become increasingly popular as a high-speed alternative
to liquid-crystal spatial light modulators for light focusing via wavefront shaping based on
binary amplitude modulations. To exploit the potentials and limitations of the state-of-the-art
DMD-based wavefront shaping methods, in this study, for the first time, we compared four
representative, non-holographic and DMD-based methods that are reported so far in literature with
the same experimental and simulation conditions, including a real-valued intensity transmission
matrix (RVITM)-based algorithm, a complex-valued transmission matrix (TM)-based algorithm,
a conditional probability algorithm and a genetic algorithm. We investigated the maximum
achievable peak-to-background ratio (PBR) in comparison to theoretical expectations, and further
improved the performance of the RVITM-based method. With both numerical simulations and
experiments, we found that the genetic algorithm offered the highest PBR but suffered from the
lowest focusing speed, while the RVITM-based algorithm provided a comparable PBR to that of
the genetic algorithm, and the highest focusing speed.
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citation, and DOI.

1. Introduction

Focusing light through MMFs has been an area of increasing interest as it enables high-resolution
images of internal organs and tissues to be acquired at a fibre tip with rich optical contrast.
Compared to multi-core coherent fibre bundles that are commonly used in biomedical endoscopy,
MMF-based endoscopy benefits from a greater degree of miniaturisation, a higher spatial
resolution and a lower cost [1–3]. In recent years, wavefront shaping (WS) emerged as an effective
way of controlling light transport through MMFs [4–8]. In WS, the wavefront of the incident light
is modulated to correct for the mode dispersion-induced wavefront distortions so that the waves
interfere constructively at the desired location through a scattering medium (such as a MMF) to
form a tight optical focus. As such, an optical focus can be raster-scanned over the tip of a MMF
to interrogate tissue in a wide range of optical microscopy modalities, including confocal [9],
fluorescence [2,10–12], two-photon [13], Raman [14,15] and photoacoustic microscopy [16–18].

A number of methods have been proposed for WS in the past decade [1,3,7,9,11,19–25].
Liquid-crystal spatial light modulators (LC-SLM) were popularly employed in WS to provide
phase modulations [1,4,6,7]. Early WS works focused on iterative algorithms that used light
intensity at the target position as feedback; the incident wavefront was then iteratively optimised
by maximising the strength of feedback signal [4,26]. Digital optical phase conjugation (DOPC)
was also studied for WS with a LC-SLM [7], in which a laser beam was focused at the target
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position at one end of a MMF and the conjugated field of the transmitted light at the other end
was projected back to focus at the original focusing point. TM-based methods were also studied
[1,3,6,27,28], in which the light transport characteristics of a disordered medium was modelled as
a complex-valued TM, which was then estimated in a characterisation measurement. Subsequently
an optimal input field was determined to correct for the light field changes according to the
estimated TM to generate an optical focus. In a study by Zahra Fayyaz et al. [29], the performance
of various algorithms with phase modulations was compared in numerical simulations including
a continuous sequential algorithm, a partitioning algorithm, a TM estimation method, a particle
swarm optimization algorithm, a genetic algorithm (GA), and a simulated annealing algorithm.
However, although demonstrated effective in producing high optical enhancement at the focusing
position through disorder media, the speed of these methods is usually limited by the slow frame
rates of LC-SLMs (typically ∼100 Hz).

As a high-speed alternative, DMDs have been studied intensively for WS [2,11,20–24] in the
last few years as they possess a much higher frame rate (23 kHz). A DMD comprises a large
array of micromirrors; each micromirror can be independently switched between two statuses
("ON" and "OFF") and hence provides binary amplitude modulations. Iterative algorithms
[30,31], DOPC [32] and TM methods [2,11,20,33] have also been demonstrated with binary
amplitude modulations for focusing light through optical diffusers. Similar to LC-SLM, with
the iterative algorithms, an optimal DMD pattern was determined via iterative optimisation of
feedback signals. However, DOPC and TM methods with binary modulations using a DMD
have additional complexities compared to those with a LC-SLM; the conjugated field of the
transmitted light and the optimal input field were first converted into binary patterns using
intensity thresholding and then displayed using a DMD for focusing, respectively. In MMF
characterisation, holographic methods are often used to retrieve phase information from the
output optical speckles [1,3,6] using an optical reference arm that increases the system complexity
and degrades its temporal stability. To address this issue, non-holographic methods have been
investigated in recent years. Iterative optimisation algorithms were proposed to calculate a
complex-valued TM from intensity-only input-output pairs [20,27,28]. Algorithms to directly
calculate the real part of the complex-valued TM were also reported to form a binary transmission
matrix to directly determine an optimal DMD patterna for focusing at output positions [22,23].
Another method calculates the conditional probability of switching "ON" each micromirror for
causing light focusing at the target position, and produces an optimal DMD pattern by setting a
threshold to switch "ON" micromirrors with higher probabilities [21]. In our previous works
[24,25], we developed a high-speed method that characterises the light intensity changes through
a disordered medium as a RVITM, based on which an optimal DMD pattern can be determined
for light focusing through an optical diffuser [25].

Although these methods have shown effectiveness for focusing light through scattering media,
direct performance comparison of non-holographic DMD-based methods on a single experimental
or simulation platform has not been extensively studied so far in literature. In this work, we studied
different categories of prominent WS methods that have been used to focus light through MMFs
using a DMD, with the aim to exploit the potentials and limitations of the existing DMD-based
WS methods for endoscopy applications. Here we focus on non-holographic methods as they
benefit from a simpler setup and a higher temporal stability compared to holographic methods,
including the RVITM algorithm [25], a phase retrieval algorithm to estimate a complex-valued
TM [20], the conditional probability algorithm (CPA) [21] and a genetic algorithm (GA) [19,31]
as a representative of iterative algorithms. We investigated the theoretical PBRs with different
criteria for the generation of the optimal DMD patterns in simulation and further increased the
PBRs in both simulation and experimental tests. Importantly, we demonstrated light focusing
through a multimode fibre using the RVITM method for endoscopy applications, and improved
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the maximum PBR of the RVITM algorithm by setting a new threshold for determining the
optimal DMD pattern for light focusing.

2. Methods and materials

2.1. Theoretical peak-to-background ratio

In binary amplitude modulations with a DMD, the amplitude of the incident light field (A) at the
DMD plane is considered to be uniform. Thus, switching "ON" the nth micromirror leads to
a contribution to the mth output mode by Atmn, where tmn is a transmission constant in the TM
representing the phase and amplitude changes. To produce a tightly focused light spot, constructive
interference at the target output position is required and hence those micromirrors with tmn
representing a phase change within [-π/2 + θR, π/2 + θR] are required to be switched "ON",
where θR is the phase of a reference light field. For simplicity, θR is usually chosen as 0, leading
to Re(tmn)>0 as the commonly used criteria for determining the switched "ON" micromirrors to
maximise the light intensity at the target output position for focusing [Fig. 1(a)][22,32]. However,
each switched "ON" micromirror also contributes to the background light intensity and some of
the micromirrors may contribute more energy to the light intensity of the background than that of
the target position. Thus, the highest PBR is not guaranteed by using Re(tmn)>0 as the criteria.
As such, switching "OFF" those micromirrors that contributes substantially to the background
light intensity can lead to a higher PBR [Fig. 1(b)].

Fig. 1. Schematic diagrams of the principle of wavefront shaping using binary amplitude
modulations with a digital micromirror device (DMD). (a) When micromirrors producing
light field components with phases in the range of [-π/2 + θR, π/2 + θR] (represented by
red arrows) are switched "ON", constructive interference of light fields at the target output
position forms a light focus. (b) Switching "OFF" those micromirrors (marked as blue)
that contributed more to the background than the focusing position further improves the
peak-to-background ratio.

In a study by Wang et al. [32], the ensemble average of the peak output intensity with binary
modulations using a DMD can be expressed as:
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Thus, the theoretical PBR is a function of the upper bound of the absolute phase difference φ.
When φ = π/2, the intensity at the mth output mode reaches the maximum, while the PBR is the
highest at φ = 0.371π. However, this formula only considers phase information for producing
the optimal input pattern for light focusing, while there are algorithms that are not solely based
on phase information for determining the optimal DMD patterns, such as the RVITM algorithm,
GA and CPA. As the PBR is considered as a more accurate performance metric than the peak
intensity at the focus for quantifying the quality of light focusing in various imaging applications,
in the following sections, we studied the maximum achievable PBR for different non-holographic
methods in comparison to the theoretical values that can be achieved using only phase information
for the optimal DMD pattern determination.

2.2. DMD-based non-holographic algorithms

RVITM-based algorithm. The relationship between the input and output light intensity dis-
tributions of a disordered medium such as a MMF can be approximated by a RVITM, which
indicates the contribution of each micromirror to the light intensity at the target output position.
In previous studies, we demonstrated that binary and grayscale images that were projected into a
MMF could be faithfully retrieved using a RVITM [24], and high-speed photoacoustic-guided
WS through an optical diffuser with a total runtime of 300 ms [25]. Several WS methods based
on similar principles were also reported [22,23,34]. Briefly, a Hadamard matrix H ∈ (-1, +1)
with dimensions of N × N was used to construct two binary matrices H1 = (H + 1)/2 and
H2 = (−H + 1)/2. These 2N binary Hadamard patterns ([H1, H2]) were sequentially displayed
on the DMD whilst the output speckles at the distal fibre tip were recorded by a camera. The
relationship between the input and output light intensities can be modelled as:⎡⎢⎢⎢⎢⎢⎢⎢⎣

I1
1 · · · I2N

1
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and thus the RVITM can be calculated via:
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where Ik
m is the intensity at the mth output position when the kth binary Hadamard pattern is

displayed as input, k ∈ (0, . . . , 2N). Accordingly, the transmission constant element connecting
the mth output mode and the nth input mode was calculated as: rvitmn = (1/N)

∑︁
k=2N Ik

mhk
n, where

hk
n is the nth element in the kth Hadamard pattern. rvitmn can be further expressed to encode both

the phase and amplitude information of the corresponding complex-valued tmn as [25]:

rvitmn = AmnARcos(θmn − ϕR) (6)

where Amn = |tmn | is the amplitude of tmn, θmn = arg(tmn) is the phase of tmn, AR and ϕR are
the amplitude and phase of the output light field when all micromirrors are switched "ON",
respectively. So, a positive rvitmn indicates that a phase difference between θmn and ϕR is in the
range of [−π/2, π/2] and therefore, switching "ON" all the micromirrors with positive rvitmn
values maximises the light intensity at the mth output mode as demonstrated in previous studies
[22,23,25,34]. Furthermore, as rvitmn represents intensity contributions [24], we hypothesize
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that some of the micromirrors with small rvitmn values may contribute more to the intensity
of the background than that of the focus. To test our hypothesis, all the micromirrors were
ranked in descending order based on their corresponding rvitmn values, and different groups of
micromirrors with top P (varying from 1 to 100%) of the rvitmn values were switched "ON" for
focusing in both experiments and numerical simulations. A PBR was then calculated for each P
value to study the dependency of the PBR on the P value.

Estimated TM-based algorithm. A reference-less method well described in Ref. [20] was used
for TM estimation. A set of random binary patterns with 50% micromirrors "ON" were displayed
on a DMD whilst the speckle intensities behind a MMF were captured by a camera. The total
number of patterns was set to be 6N to ensure a high-quality TM estimation, where N is the
total number of independent micromirrors used for light modulation. A Bayesian phase retrieval
algorithm [35] was then used to calculate a complex-valued TM from intensity-only input and
output pairs via iterative optimisation. This algorithm was chosen for the TM estimation as it had
been demonstrated with a DMD-based setup and it benefits from a moderate computational cost
[20]. An open-source script of the phase retrieval algorithm [35] was used in this work. A total
number of 200 iterations were used because it was found that the results were converged after
about 200 iterations. As this algorithm provides phase values of the TM, optimal DMD patterns
with both |arg(tmn)|<π/2 (Re(tmn>0)) and |arg(tmn)|<0.371π were used for focusing and their
focusing performance were compared.

Conditional probability-based algorithm. The CPA was described in detail in Ref. [21].
Briefly, a total number of 6N random binary patterns were used as inputs, whilst the intensities of
speckles at the output of a MMF were captured. There were three steps involved in the generation
of an input DMD pattern for focusing. First, an intensity threshold was used to divide the output
intensities into two groups: a "focusing" and a "non-focusing" group. Second, the conditional
probability of the fact that switching "ON" each micromirror leads to light focusing at the target
output position ("focusing" group) was calculated via the Bayes’ theorem. Finally, a threshold
was used to produce the optimal DMD pattern for light focusing through the MMF by switching
"ON" micromirrors with a conditional probability higher than the threshold. In this work, in order
to obtain the maximum PBR, the first threshold was set as the 80 percentile of all intensities at
the target position and the second threshold was set as the median value of all probability values,
which was demonstrated in Ref. [21] with the highest experimentally achieved enhancement.

Genetic algorithm. The method for implementing a GA for light focusing through a diffuser
was detailed in Ref. [19,31]. In this work, we used the same process but employed the PBR of the
output light field as the feedback to be maximised other than the intensity at the target position.
First, a total number of 20 random binary patterns with approximate 50% micromirrors "ON"
were used as the 1st generation population, each pattern is considered as the chromosome of an
individual, the state of a micromirror was considered to be a chromosome code ("1" for "ON" and
"0" for "OFF"). Output speckles intensities were recorded when displaying these binary patterns
on a DMD and their PBR values were compared. Individuals in the 1st generation population
were ranked according to their corresponding PBRs in the outputs. Then individuals with larger
PBRs were assigned larger probabilities to be selected as parents to produce the next generation
population by crossing the parent chromosomes with a constant cross rate. Mutation was also
introduced by randomly switching a small number of chromosome codes with a mutate rate to
avoid locally optimal solutions. In the next step, the new generation was ranked according to the
resulting PBRs and produced the next generation patterns through the aforementioned progress.
After a large number of iterations, the chromosome codes leading to a high PBR were saved in
the optimal DMD pattern in the new generation. In numerical simulations, 30000 generations
were implemented and the cross rate was set to be 0.6 and the mutate rate, 0.02. In experiments,
4000 generations were implemented, and the mutate rate was set to be 0.1 ∗ e−G/600 + 0.02 to
speed up the optimisation, where G is the index of the generation.
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2.3. Numerical simulation

Numerical simulations were implemented in MATLAB to investigate the performance of different
algorithms described in Sec. 2.2. A complex-valued TM was generated with random phases and
amplitudes following an uniform and a Rayleigh probability density function [4] between 0 and
2π, and 0 and 1, respectively. The number of input micromirrors (N) was set to be 32 × 32 while
the number of output pixels (M) was set to be 64 × 64. Output light intensities were calculated
based on the simulated TM via Em = |

∑︁N
n=1 tmnEn |

2, which were then fed to those algorithms for
comparison. The resulting PBR was calculated as the ratio of the intensity at the focusing pixel
over the average intensity in the background, for the evaluation and comparison of the focusing
performance with different algorithms. In addition, since the TM for simulating the MMF was
known, it was used as a ground truth for comparison with results achieved with DMD-based
algorithms.

As the TM elements follow a circular Gaussian distribution [4], modulating phases of output
light field components coming from all input modes to an ideal phase ϕ = 0 or to ϕ = ϕR
leads to approximately the same constructive interference at the output position. For the ease
of comparison with the RVITM algorithm which employs ϕR as the ideal phase, the focusing
condition was chosen as |θmn − ϕR |<φ rather than |θmn |<φ. Both φ = π/2 and φ = 0.371π
were used as the upper boundary for producing the DMD pattern to focus light in the TM-based
approaches.

2.4. Experimental setup

The experimental setup is illustrated in Fig. 2. The light source was a collimated diode-pumped
solid-state laser module (532 nm, 4.5 mW, CPS532, Thorlabs, NJ, USA). After beam expansion
through two achromatic lenses (AC254-030-A-ML; AC254-075-A-ML, Thorlabs, NJ, USA), the
laser light was spatially modulated using a DMD (DLP7000, Texas Instruments, TX, USA) and
then projected onto the proximal facet of a MMF (105 µm, 0.22 NA, 1 m, M43L01, Thorlabs,
NJ, USA) via a tube lens (AC254-050-A-ML, Thorlabs, NJ, USA) and an objective (20×, 0.4
NA, RMS20X, Thorlabs, NJ, USA). The light illuminated area on the DMD included 32 × 32
independent input modes, with each 2 × 2 micromirrors grouped as one mode. An objective (20×,
0.4 NA, RMS20X, Thorlabs, NJ, USA) and a tube lens (AC254-0100-A-ML, Thorlabs, NJ, USA)
were used to magnify the output light beam before it was captured by a complementary metal-
oxide-semiconductor (CMOS) camera (C11440-22CU01, Hamamatsu Photonics, Shizuoka,
Japan) with a frame rate of 200 frames per second (fps) for MMF characterisation.

Fig. 2. Schematic of the experimental setup. L1-L4, convex lenses; Obj1-Obj2, 20×
objectives; DMD, digital micromirror device; MMF, multimode fiber.

3. Results

3.1. Maximising the PBR with the RVITM-based algorithm

With the RVITM-based algorithm, each micromirror corresponds a phase difference θmn − ϕR
and a transmission constant rvitmn. Figure 3(a) shows the relationship between the rvitmn
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value obtained via Eq. (5) and the phase difference obtained from the known TM for each
micromirror in numerical simulations. The distribution of rvitmn values has an envelope of a
cosine function [green curve in Fig. 3(a)]. As the phases of tmn obey an uniform distribution in
[−π, π], approximately half number of the rvitmn have positive values and their corresponding
phase differences θmn−ϕR are in the range of [−π/2, π/2]. So, switching "ON" the corresponding
micromirrors with positive rvitmn values resulted in constructive interference and thus maximised
the light intensity at the target output position leading to light focusing. The PBR was strongly
dependent on the P value (Fig. 3(b)). With both experiments and simulations, the PBR increased
with P decreasing from 50% [red line in Fig. 3(a)] to 30%, where it reaches the global maximum.
Compared to P = 50%, P = 30% led to a lower peak intensity at the focusing position but a higher
PBR, suggesting that switching "ON" micromirrors with rvitmn values distributed in the dome
region above the black line in Fig. 3(a) substantially suppressed the background intensity.

Fig. 3. Maximising peak-to-background ratio (PBR) with the RVITM-based algorithm. (a)
The relationship between rvitmn values and phase difference (θmn − ϕR) that has an envelope
of a cosine function (green curve). When P = 50%, the micromirrors with rvitmn above
the red line (rvitmn = 0) are switched "ON", and when P = 30%, micromirrors with rvitmn
values distributed in the dome region above the black line are switched "ON". (b) PBR as
a function of the proportions of switched "ON" micromirrors (P) to the total number of
micromirrors with both simulations and experiments.

3.2. Performance comparison in numerical simulation

The performance of different algorithms was evaluated in numerical simulations and compared in
Table 1. To facilitate the comparison of the resulting optimal DMD patterns for focusing obtained
from different algorithms, rvitmn and θmn − ϕR values were calculated for all the micromirrors
using the ground truth TM. The rvitmn and θmn − ϕR values corresponding to all the switched
"ON" micromirrors that were determined by different algorithms are plotted in Fig. 4. The known
ground truth TM was also used to generated an optimum DMD pattern for focusing as a reference.
As shown in Fig. 4(a) and (b), the blue and green dots represent micromirrors that were switched
"ON" with φ = π/2 used as the criterion, while the blue dots represent the micromirrors that
were switched "ON" when the upper boundary φ was changed to 0.371π. With the reference
TM, a PBR value of 208.4 was achieved at φ = 0.371π, which is 13.9% higher than a PBR
value of 183.0 obtained with φ = π/2. This increase of PBR is consistent with the theoretical
expectation (13.8%) [32]. The PBR values achieved with the estimated TM using the phase
retrieval algorithm were slightly smaller than that achieved with the reference TM (170.4 for
φ = π/2 and 190.3 for φ = 0.371π, respectively). This slight reduction of PBR values can be
attributed to the errors of the TM calculation, which is indicated by the different groups of ’ON’
micromirrors [Fig. 4(b)]. The CPA produced a smaller PBR than the estimated TM method [PBR



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 14276

= 156.7; Fig. 4(c)]. With the RVITM algorithm [Fig. 4(d)], a threshold of P = 50% resulted in the
same DMD pattern (as represented by the blue and green dots) for light focusing as that obtained
from the reference TM and hence the same PBR. When P = 30% was used as the criterion, those
micromirrors represented by the blue dots were switched "ON" and the PBR value increased to
228.2, which is even higher than that achieved with the reference TM at φ = 0.371π (PBR =
208.4). The PBR value achieved with the GA reached the highest value of 239.7 among all the
considered algorithms after the evolution of 30,000 iterations [Figs. 4(e), 4(f)].

Fig. 4. Variations of the DMD micromirrors that are chosen to be switched "ON" for
focusing and their corresponding rvitmn and phase difference (θmn − ϕR) with different
non-holographic algorithms in simulations. (a) Reference TM; when |θmn − ϕR | ≤ π/2,
the achieved peak intensity Im = 7227, and the peak-to-background ratio PBR = 183.0;
and when |θmn − ϕR | ≤ 0.371π, Im = 6182 and PBR = 208.4. (b) TM-based algorithm
(estimated TM), when |θmn − ϕR | ≤ π/2, the achieved Im = 6563 and PBR = 170.4, and
when |θmn − ϕR | ≤ 0.371π, the achieved Im = 6257 and PBR = 190.3. (c) Conditional
probability algorithm, the achieved Im = 5720 and PBR = 156.7. (d) RVITM algorithms,
when P = 50%, the achieved Im = 7227 and PBR = 183.0, and when P = 30%, the achieved
Im = 4170, PBR = 228.2. (e) Genetic algorithm, the achieved Im = 4835 and PBR = 239.7.
Insets are the output light focus patterns at the central position. (f) The evolution curve
of the average peak-to-background ratio (PBR) in each generation with the GA. In (a) and
(b), both the blue and the green dots represent micromirrors that were switched "ON" with
φ = π/2 used as the criterion, while the blue dots represent additional micromirrors that
were switched "ON" when the upper boundary φ was changed to 0.371π; in (d), both the
blue and green dots represent micromirrors that were switched "ON" with P = 50% while
the blue dots represent micromirrors that were switched "ON" with P = 30%.

To compare the focusing speed of different methods, the average time costs taken for different
methods to compute an optimal DMD pattern for focusing over 100 output locations were
obtained on a personal computer with a 2.3 GHz Dual-Core Intel Core i5 CPU (see Table 1).
Although providing the highest PBR, the GA had the longest computation time of 400 s. In
comparison, with 200 iterations the computation time for the TM-based method and the CPA
was 15 s and 4 s, respectively. The RVITM-based algorithm calculated the rvitmn values for all
the output positions at the same time, while for each output position the computation time for
focusing was 7.5 ms.
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Table 1. Performance of non-holographic algorithms for focusing light through a
multimode fibre.

Algorithm PBR (S) Runtime (S) PBR (E) Runtime (E)d No. of input modes

Reference TMa 183.0 208.4 - - - 1024

RVITMc 183.0 228.2 0.0075 s 79.9 89.4 10.3 s 1024

Estimated TMb 170.4 190.3 15 s 58.5 64.2 46 s 1024

CPA 156.7 4 s 36 36 s 1024

GA 239.7 400 s 91 7920 s 1024

a,bWith reference TM and estimated TM, the PBR refers to two different conditions for determining the
optimal DMD patterns for focusing: ( |arg(tmn) |<π/2 (top) and |arg(tmn) |<0.371π) (bottom).
cFor RVITM, the PBR refers to P = 50% (up) and P = 30% (down). S, simulations; E, experiments.
dIn experiments, the time cost includes the time for DMD patterns display during the fibre characterisation
and the computation time for producing the optimal DMD patterns, while in simulations, only the latter was
included in the time cost.

3.3. Performance comparison in experiments

The output light intensity patterns of an optical focus generated at the distal end of the MMF using
different methods are shown in Fig. 5. With the estimated TM, the PBR was 58.5 when switching
"ON" micromirrors with |arg(tmn)|<π/2, and increased to 64.2 with |arg(tmn)|<0.371π (Table 1).
While the PBR achieved with the CPA was the lowest (36), the GA produced the largest PBR of
91 among all the algorithms after 4000 iterations [Figs. 5(d), 5(e)]. The relationship between the
achieved PBR and P with the RVITM-based algorithm is shown in Fig. 3(b). The same as in
simulations, the highest PBR value of 89.4 was reached at P = 30% [Fig. 5(c)] compared to a
PBR of 79.9 at P = 50%. The profiles of light foci are compared in Fig. 5(f); the foci achieved

Fig. 5. Experimentally obtained light focusing patterns through a multimode fibre with
(a) TM-based algorithm (estimated TM) at |arg(tmn)|<0.371π, (b) Conditional probability
algorithm (CPA), (c) RVITM-based algorithm at P = 30% and (d) Genetic algorithm (GA).
(e) The evolution curve of the peak-to-background ratio (PBR) with the GA over 4000
iterations. (f) The intensity profiles of the achieved light foci along the red lines for different
methods. Scale bar, 10 µm.



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 14278

with different methods had approximately the same diameter of ∼1.7 µm. The estimated TM
had a higher background intensity compared to the reference TM, GA and RVITM methods,
which can be attributed to the difference between the estimated TM and the reference TM. In
the experiments, the signal-to-noise ratio (SNR) was estimated as 33.3. We also studied the
influence of noise in simulations by setting SNR from 33.3 to 3.33, which are lower than the
SNR obtained in experiments. The PBRs achieved with all the algorithms were very close to
values achieved without noise, indicating that the SNR in this range has neglectable impact on
the performance of the algorithms. The deviation of PBRs between simulation and experimental
results may be attributed to several factors including the system instability, the fluctuation of
laser mode and energy, the non-uniformity of the laser beam and the light coupling loss due to
the diffraction of the DMD. The GA had the longest focusing runtime of ∼2.2 h, while the time
costs were 46 s, 36 s and 10.3 s for the estimated TM, CPA and the RVITM algorithms including
both time costs for input DMD pattern displays and data processing, respectively.

4. Discussion

In this study, we investigated the performance of four representative non-holographic DMD-based
methods for focusing light through a MMF, including the RVITM algorithm, an estimated
TM-based algorithm, the CPA and a GA. Although the RVITM method has been used for
wavefront shaping based on photoacoustic signals as feedback [25], in this study, it is the first
time that it is used for MMF-based endoscopy applications. With both numerical simulations
and experiments for focusing light through a MMF, we studied the maximum achievable PBR for
different methods and compared them with theoretical expectations. We demonstrated that the
PBR of the optical foci can be further improved by switching "ON" micromirrors corresponding
to |arg(tmn)|<0.371π compared to that achieved with the commonly used criterion real(tmn)>0
for DMD-based WS [22,23,32].

Different from methods relying solely on phase information, the RVITM combines both
phase and amplitude information and achieved a higher PBR at P = 30% as compared to the
estimated TM method, indicating that the enhancement of the PBR can benefit from employing
amplitude information. Additionally, we found that the GA achieved the highest PBR among
all the investigated methods via a large number of iterations as expected. Interestingly, a small
number of micromirrors with negative rvitmn values were switched "ON" with the GA [Fig. 4(e)],
indicating that although these micromirrors had negative contributions to the light intensity at the
focusing position, they may have substantially reduced the average intensity of the background,
leading to a higher PBR compared to those methods considering only micromirrors with positive
rvitmn values. However, the GA cost a much longer time for fibre characterisation and hence
hindered its use in practical applications where repeated characterisations are required. It should
be noted that the parameter settings of the GA can affect the performance and hence the PBR and
computation time for the GA might be further improved. The improved RVITM algorithm in this
study provided a practical solution to further increase the PBR by setting a threshold based on
the rvitmn values. In future works, the relationship between the PBR and the phase and amplitude
of the complex-valued TM could be investigated. To further increase the PBR, more independent
micromirrors could be used in the future, however, at the expense of the characterisation time
[23].

Changes in the fibre geometry and variations in the environmental temperature can lead to
substantial changes in light transmission characteristics of MMFs and hence degraded focusing
performance, which is a primary obstacle for the translation of MMF-based endoscopes for
biomedical applications. Several approaches were proposed to address this challenge. In a
study by Ploschner et al. [1], a complex-valued TM was reconstructed after the fibre bending
with the knowledge of the MMF geometry. However, this approach is limited to short fibres
with simple bending [1]. The same group also reported that gradient-index MMFs have a
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higher resistance to geometry changes compared to step-index MMFs, and demonstrated that
the imaging performance with gradient-index MMFs was only slightly degraded after fibre
bending [36]. Repeated fibre characterisation could also be a potential solution to address the
challenges involved with fibre bending for biomedical applications, and as such high-speed fibre
characterisation methods such as the RVITM algorithm could be advantageous. In addition, the
employment of high-performance computing can also shorten the characterisation time [37].

This study was focused on non-holographic approaches that benefit from a lower system
complexity, higher temporal stability compared to holographic approaches. It is worthy noting
that some of reported holographic approaches could be advantageous for specific applications. For
example, DOPC was studied for focusing through a dynamic tissue within several milliseconds [38]
owing to ultrafast data acquisition and processing. Furthermore, the uniform light enhancement
across all the spatial locations on the output fibre facet was achieved with DOPC methods [7]
and the TM method using an external reference light arm for TM measurement [2]. An off-axis
Lee hologram approach [2,11] was also studied with a DMD for phase modulation, achieving a
high enhancement factor of 3800 for focusing light through a MMF with a diameter of 50 µm
and a numerical aperture of 0.22. However, the diffraction efficiency of the light energy from the
employed order was reported to be only 8% [39]. In contrast, non-holographic approaches are
more energy efficient as they make use of a larger proportion of the light reflected from the DMD,
which could be useful for imaging applications where the availability of suitable light sources
is restricted by a trade-off between the light energy and repetition rate, such as photoacoustic
imaging [18,40]. As a burgeoning method, neural networks have also been demonstrated for
focusing light at a single focus and projecting heterogeneous patterns with a LC-SLM [41,42].
Most recently, a hybrid method that combines neural networks and a GA was reported, in which
a neural network was used to produce a DMD pattern, which was subsequently used as the first
generation in a GA to further improve the light enhancement factor so that the computation time
was reduced compared to pure GA-based methods [43].

5. Conclusions

In conclusion, we compared the performance of several representative non-holographic algorithms
for focusing light through a MMF. The maximum achievable PBR was explored with both
numerical simulations and experiments on a simple setup in comparison to theoretical expectations,
and was further improved for the RVITM-based algorithm compared to that was achieved by
simply switching "ON" micromirrors with positive rvitmn values in previous studies. It was
further found that the GA offered the highest PBR but suffered from a slow computation speed,
while the RVITM algorithm provided a comparable PBR to that of the GA but had the highest
focusing speed among all the methods investigated.
Funding. Wellcome Trust (203148/Z/16/Z, WT101957); Engineering and Physical Sciences Research Council
(NS/A000027/1, NS/A000049/1).

Disclosures. The authors declare that there are no conflicts of interest. T. V is co-founder and shareholder of
Hypervision Surgical Ltd, London, UK. He is also a shareholder of Mauna Kea Technologies, Paris, France.

References
1. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535

(2015).
2. S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode

fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92–98 (2018).
3. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and

wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
4. I. M. Vellekoop and A. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16),

2309–2311 (2007).
5. S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in

optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10),
100601 (2010).

https://doi.org/10.1038/nphoton.2015.112
https://doi.org/10.1038/s41377-018-0094-x
https://doi.org/10.1103/PhysRevLett.109.203901
https://doi.org/10.1364/OL.32.002309
https://doi.org/10.1103/PhysRevLett.104.100601


Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 14280

6. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation
analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).

7. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical
fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).

8. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab
Chip 12(3), 635–639 (2012).

9. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a
multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).

10. S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage,
“Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,”
Light: Sci. Appl. 7(1), 110–116 (2018).

11. A. M. Caravaca-Aguirre and R. Piestun, “Single multimode fiber endoscope,” Opt. Express 25(3), 1656–1665 (2017).
12. S. Ohayon, A. Caravaca-Aguirre, R. Piestun, and J. J. DiCarlo, “Minimally invasive multimode optical fiber

microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9(4), 1492–1509 (2018).
13. E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express

23(25), 32158–32170 (2015).
14. S. Deng, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Raman imaging through multimode sapphire fiber,”

Opt. Express 27(2), 1090–1098 (2019).
15. I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12),

13782–13798 (2017).
16. I. N. Papadopoulos, O. Simandoux, S. Farahi, J. Pierre Huignard, E. Bossy, D. Psaltis, and C. Moser, “Optical-

resolution photoacoustic microscopy by use of a multimode fiber,” Appl. Phys. Lett. 102(21), 211106 (2013).
17. S. Mezil, A. M. Caravaca-Aguirre, E. Z. Zhang, P. Moreau, I. Wang, P. C. Beard, and E. Bossy, “Single-shot hybrid

photoacoustic-fluorescent microendoscopy through a multimode fiber with wavefront shaping,” Biomed. Opt. Express
11(10), 5717–5727 (2020).

18. T. Zhao, A. E. Desjardins, S. Ourselin, T. Vercauteren, and W. Xia, “Minimally invasive photoacoustic imaging:
Current status and future perspectives,” Photoacoustics 16, 100146 (2019).

19. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing
through turbid media in noisy environments,” Opt. Express 20(5), 4840–4849 (2012).

20. A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less
measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,”
Opt. Express 23(9), 11898–11911 (2015).

21. T. Zhao, L. Deng, W. Wang, D. S. Elson, and L. Su, “Bayes’ theorem-based binary algorithm for fast reference-less
calibration of a multimode fiber,” Opt. Express 26(16), 20368–20378 (2018).

22. X. Tao, D. Bodington, M. Reinig, and J. Kubby, “High-speed scanning interferometric focusing by fast measurement
of binary transmission matrix for channel demixing,” Opt. Express 23(11), 14168–14187 (2015).

23. H. Yu, K. Lee, and Y. Park, “Ultrahigh enhancement of light focusing through disordered media controlled by
mega-pixel modes,” Opt. Express 25(7), 8036–8047 (2017).

24. T. Zhao, S. Ourselin, T. Vercauteren, and W. Xia, “Seeing through multimode fibers with real-valued intensity
transmission matrices,” Opt. Express 28(14), 20978–20991 (2020).

25. T. Zhao, S. Ourselin, T. Vercauteren, and W. Xia, “High-speed photoacoustic-guided wavefront shaping for focusing
light in scattering media,” Opt. Lett. 46(5), 1165–1168 (2021).

26. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
27. G. Huang, D. Wu, J. Luo, Y. Huang, and Y. Shen, “Retrieving the optical transmission matrix of a multimode fiber

using the extended kalman filter,” Opt. Express 28(7), 9487–9500 (2020).
28. M. N’Gom, T. B. Norris, E. Michielssen, and R. R. Nadakuditi, “Mode control in a multimode fiber through acquiring

its transmission matrix from a reference-less optical system,” Opt. Lett. 43(3), 419–422 (2018).
29. Z. Fayyaz, N. Mohammadian, M. Reza Rahimi Tabar, R. Manwar, and K. Avanaki, “A comparative study of

optimization algorithms for wavefront shaping,” J. Innovative Opt. Health Sci. 12(04), 1942002 (2019).
30. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic

media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011).
31. X. Zhang and P. Kner, “Binary wavefront optimization using a genetic algorithm,” J. Opt. 16(12), 125704 (2014).
32. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond

digital optical phase conjugation,” Optica 2(8), 728–735 (2015).
33. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope:

pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
34. J. W. Tay, J. Liang, and L. V. Wang, “Amplitude-masked photoacoustic wavefront shaping and application in

flowmetry,” Opt. Lett. 39(19), 5499–5502 (2014).
35. A. Drémeau and F. Krzakala, “Phase recovery from a bayesian point of view: the variational approach,” in 2015

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE, 2015), pp. 3661–3665.
36. D. E. B. Flaes, J. Stopka, S. Turtaev, J. F. De Boer, T. Tyc, and T. Čižmár, “Robustness of light-transport processes to

bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).

https://doi.org/10.1364/OE.19.018871
https://doi.org/10.1364/OE.20.010583
https://doi.org/10.1039/C1LC20719A
https://doi.org/10.1039/C1LC20719A
https://doi.org/10.1364/OE.23.023845
https://doi.org/10.1038/s41377-018-0111-0
https://doi.org/10.1364/OE.25.001656
https://doi.org/10.1364/BOE.9.001492
https://doi.org/10.1364/OE.23.032158
https://doi.org/10.1364/OE.27.001090
https://doi.org/10.1364/OE.25.013782
https://doi.org/10.1063/1.4807621
https://doi.org/10.1364/BOE.400686
https://doi.org/10.1016/j.pacs.2019.100146
https://doi.org/10.1364/OE.20.004840
https://doi.org/10.1364/OE.23.011898
https://doi.org/10.1364/OE.26.020368
https://doi.org/10.1364/OE.23.014168
https://doi.org/10.1364/OE.25.008036
https://doi.org/10.1364/OE.396734
https://doi.org/10.1364/OL.412572
https://doi.org/10.1364/OE.23.012189
https://doi.org/10.1364/OE.389133
https://doi.org/10.1364/OL.43.000419
https://doi.org/10.1142/S1793545819420021
https://doi.org/10.1364/OE.19.004017
https://doi.org/10.1088/2040-8978/16/12/125704
https://doi.org/10.1364/OPTICA.2.000728
https://doi.org/10.1364/OL.39.001921
https://doi.org/10.1364/OL.39.005499
https://doi.org/10.1103/PhysRevLett.120.233901


Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 14281

37. M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “Gpu accelerated toolbox for real-time beam-shaping in
multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).

38. Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, “Optical focusing deep inside dynamic scattering media
with near-infrared time-reversed ultrasonically encoded (true) light,” Nat. Commun. 6(1), 5904 (2015).

39. S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic
liquid-crystal and dmd based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884
(2017).

40. M. Kuniyil Ajith Singh and W. Xia, “Portable and affordable light source-based photoacoustic tomography,” Sensors
20(21), 6173 (2020).

41. A. Turpin, I. Vishniakou, and J. d Seelig, “Light scattering control in transmission and reflection with neural
networks,” Opt. Express 26(23), 30911–30929 (2018).

42. B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser, “Multimode optical fiber transmission with a
deep learning network,” Light: Sci. Appl. 7(1), 69 (2018).

43. Y. Luo, S. Yan, H. Li, P. Lai, and Y. Zheng, “Focusing light through scattering media by reinforced hybrid algorithms,”
APL Photonics 5(1), 016109 (2020).

https://doi.org/10.1364/OE.22.002933
https://doi.org/10.1038/ncomms6904
https://doi.org/10.1364/OE.25.029874
https://doi.org/10.3390/s20216173
https://doi.org/10.1364/OE.26.030911
https://doi.org/10.1038/s41377-018-0074-1
https://doi.org/10.1063/1.5131181

