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Abstract: Image transmission through multimode optical fibers has been an area of immense
interests driven by the demand for miniature endoscopes in biomedicine and higher speed
and capacity in telecommunications. Conventionally, a complex-valued transmission matrix is
obtained experimentally to link the input and output light fields of a multimode fiber for image
retrieval, which complicates the experimental setup and increases the computational complexity.
Here, we report a simple and high-speed method for image retrieval based on our demonstration
of a pseudo-linearity between the input and output light intensity distributions of multimode
fibers. We studied the impact of several key parameters to image retrieval, including image pixel
count, fiber core diameter and numerical aperture. We further demonstrated with experiments
and numerical simulations that a wide variety of input binary and gray scale images could be
faithfully retrieved from the corresponding output speckle patterns. Thus, it promises to be useful
for highly miniaturized endoscopy in biomedicine and spatial-mode-division multiplexing in
telecommunications.
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distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Multimode fibers (MMFs) have been increasingly attractive for applications in biomedical
endoscopy and telecommunications, owing to the capability of transporting images via a large
number of transverse optical modes. For biomedical endoscopy, the number of transverse modes
in an MMF represents the number of pixels in the images. Compared to multi-core coherent
fiber bundles that are commonly used in biomedical endoscopy, MMFs are significantly more
cost-effective, and the effective pixel density in an MMF can be 1-2 orders of magnitudes greater
[1–2]. For telecommunications, MMFs are attractive due to the potential of multiplexing data
signals within the large number of modes. However, light propagation in MMFs suffers from
modal dispersion and mode coupling; for example, when projecting an image pattern onto the
proximal end of an MMF, the light field couples into different modes with different propagation
constants and thus forms a random-like speckle pattern at the distal end [1–4].
In the last decade, wavefront shaping has been an emerging method for controlling light

transport through disordered media such as an MMF [5–32]. A number of research groups
[11–12,14–15,23–26,29–31] have demonstrated methods based on the transmission matrix (TM)
theory for image transmission through disordered media. In this theory, the optical system of a
disordered medium is characterized by a complex-valued matrix, which connects the input and
output light fields with transmission constants that have amplitude and phase information. Based
on this matrix, both the input and output light fields are divided into orthogonal [11,14,29,30] or
spatial frequency modes [1,26,33], whilst a transmission constant linking an input mode to an
output mode represents the change of light field during the transport between these two modes.
Therefore, the input light field and hence the input intensity pattern can be calculated when the
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TM and the output light field with phases and amplitudes information are measured. However,
conventional cameras are only able to capture light intensity (square of amplitude), so the phase
information is usually obtained with holographical methods [1,26,31], which require the use of a
complex optical reference arm that can degrade the system stability.
Recently, image retrievals through disordered media using only the intensity information

of the output light field were achieved with deep learning [34–41] and model-based methods
[42], allowing a simpler optical system compared to those of TM-based methods. With deep
learning, a large set of input-output image pairs were used to train a multi-layer neural network
for predicting the input images from the output speckles [34–41]. However, the requirements for
large training datasets and iterative optimization processes resulted in prolonged time for data
acquisition and neural network training. Further, the performance of the trained neural network
is likely to depend on similarities between the testing and training datasets. Most recently, a
model-based method was used to characterize an MMF [42]. With this method, a set of input
images were projected onto one end of an MMF whilst the intensity values of the outputs at the
other end were converted into amplitude (square root of the intensity) information with zero
phase. With these amplitudes and intensities in the input-output pairs, an iterative algorithm
was used to obtain a complex-valued matrix as the inverse TM of the fiber. Different from the
deep learning methods, this matrix explicitly linked the input images with the output speckles
with a physically-informed model and hence allowed the retrieval of images of complex natural
scenes [42]. However, this method also requires large datasets and time-consuming iterative
optimization for calculating the complex-valued matrix, which limits its applicability. Thus,
a reference-arm-free and high-speed approach for MMF characterization and image retrieval
remains highly desired.
In this work, we introduce a method to characterize an MMF with a real-valued intensity

transmission matrix (RVITM), which connects the input and output light intensities and hence
to retrieve input images from the intensity values of the output speckles. This method is based
on an assumption of a pseudo-linearity between the input and output intensity distributions
of MMFs under specific conditions as investigated in this study. Importantly, as calculating
RVITMs was achieved without a time-consuming iterative process or a large training dataset,
this reference-arm-free method allowed a high-speed fiber characterization and image retrieval
performed within ∼16 s (∼8.2 s for data acquisition and ∼7.8 s for RVITM calculation) and
0.01 s for 1024-pixel images, respectively, using a desktop PC (Intel i7 8700, 3.2 GHz) and an
unoptimized software implementation. Our approach thus could be useful for several applications
in biomedical endoscopy and telecommunications.

2. Methods and materials

2.1. RVITM and image retrieval

Image retrieval via a RVITM comprised a characterization step and an image reconstruction
step as illustrated in Figs. 1(a) and 1(b). In the characterization step, as the DMD provides only
binary modulations between ‘1’ and ‘0’, a Hadamard matrix H ∈ (-1, +1) with a size of N by N
(notably, N is the power of 2), was converted into two binary matrices H1 and H2 via the formulas
H1 = (H+1)/2, and H2 = (-H+1)/2, respectively. Each column of a binary matrix [H1, H2] was
then converted to a square matrix as a binary pattern displayed on the DMD, resulting in a total
number of 2N binary Hadamard patterns in the input set (the pixel count of each DMD pattern
was N). Here we modelled a RVITM that connected the intensities of the input patterns and the
output speckles as:
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I11 · · · Ip

1
...

. . .
...

I1m · · · Ip
m


= RVITM · [H1,H2], (1)

where Ip
m represented the intensity value at the mth pixel in the pth output speckle. As all the

values in the first binary Hadamard pattern were ‘1’, Eq. (1) was further expressed to arrive at a
Hadamard matrix [H, -H] ∈ (-1, +1) on the right-hand side as:

2I11 − I11 · · · 2Ip
1 − I11

...
. . .

...

2I1m − I1m · · · 2Ip
m − I1m


= RVITM · [2H1 − 1, 2H2 − 1] = RVITM · [H,−H], (2)

so that the RVITM can be calculated as:

RVITM =


2I11 − I11 · · · 2Ip

1 − I11
...

. . .
...

2I1m − I1m · · · 2Ip
m − I1m


· [H,−H]T , (3)

where [H, -H]T is the transpose of [H, -H] and [H, -H]T = [H, -H]−1 owing to the Hadamard
matrix properties.

In the second step, the RVITM was used to reconstruct input images from the output speckles
using linear inversion as:

Iimage = RVITM+ · Iout ≈ Iin, (4)

where Iimage is the intensity distribution of retrieved pattern, Iout is the intensity distribution of
output speckle measured by a camera. Here, an approximation symbol is used to highlight the
approximate linear relationship between the input and output intensities as a pseudo-linearity,
and RVITM+ represents the pseudo-inverse of RVITM.

2.2. Experimental setup

The experimental setup for fiber characterization was illustrated in Fig. 1(c). The intensity of a
light beam from a pulsed laser (532 nm, 2 ns, SPOT-10-200-532, Elforlight, Daventry, United
Kingdom) was spatially modulated using a DMD (DLP7000, 768×1080 pixels, Texas Instruments,
Texas, USA) with a set of binary patterns, and then projected onto the proximal end of a MMF
(Ø200 µm, 0.22 NA, 1 m, M122L01, Thorlabs, New Jersey, USA) via a tube lens (AC254-050-
A-ML, Thorlabs, New Jersey, USA) and an objective (20×, 0.4 NA, RMS20X, Thorlabs, New
Jersey, USA). After magnification with an objective (20×, 0.4 NA, RMS20X, Thorlabs, New
Jersey, USA) and a tube lens (AC254-0100-A-ML, Thorlabs, New Jersey, USA), the intensities
of the output speckles at the other end were captured by a CMOS camera (C11440-22CU01,
Hamamatsu Photonics, Shizuoka, Japan).

2.3. Experimental investigation

Several experiments were performed to investigate the conditions of the pseudo-linearity and the
impact of several fiber parameters to the fidelity of image retrieval. First, to study the relationship
between the intensity distribution of the input image to the image retrieval performance, the
number of switched ‘ON’ micromirrors (J) was varied from 32 to 1024 while the total number of
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Fig. 1. Schematic illustrations of the principle and experimental setup of image retrieval
through a multimode fiber with a real-valued intensity transmission matrix (RVITM). (a)
The method of multimode fiber characterization with RVITM. To obtain the RVITM, a set
of binary Hadamard patterns are projected onto the proximal end of a multimode fiber with
a DMD, whilst intensity values of the speckles at the other end are captured by a camera. (b)
The process of retrieving an input image pattern (letters ‘KCL’) from the corresponding
speckle pattern with the calculated RVITM. Notably, RVITM+ represents the pseudo-inverse
of RVITM. (c) Schematic diagram of the experimental setup. L1-L4, tube lens; Obj1-Obj2,
20× objectives; DMD, digital micromirrors device; MMF, multimode fiber; CMOS, camera.
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input pixels remained constant (1024). With each J, 64 different input patterns were generated
by switching ‘ON’ the micromirrors at J random positions. A step-index MMF (Table 1,
Fiber-200-0.22) was used for this experiment. Second, to study the impact of the total pixel count
of input pattern (N), N was varied from 8×8, 16×16, 32×32 to 64×64 in the fiber characterization
step. This was realized by combining different numbers of micromirrors on the DMD as one
macro-pixel while keeping the number of illuminated micromirrors in the DMD the same
(64×64). For example, when 2×2 micromirrors were combined as one input macro-pixel to be
switched ‘ON’ or ‘OFF’ simultaneously, the input pixel count was 32×32= 1024. Thus, the
resulting RVITM had a size of 1024×M (M is the output pixel count). After characterization,
64 random binary patterns were projected onto the DMD with the same illumination area that
covered 64×64 micromirrors as the input ground truths. As such, although the same set of
input patterns were used, the pixel counts of the ground truths and the retrieved images varied
with N by changing the size of each macro-pixel from 1×1 to 8×8. Third, to study the impact
of the numbers of supported transverse modes of MMFs, three different MMFs (as listed in
Table 1) were tested. Finally, to demonstrate the impact of the variability of input images,
binary images of different types, including handwritten digits [43], schematic plants, animals,
Chinese characters and random patterns, were studied for image retrievals through a step-index
multimode fiber (Table 1, Fiber-200-0.22). The resulting fidelity of image retrieval was indicated
by the correlation coefficients between the retrieved images and the corresponding ground truths.
To further improve the fidelity for retrieving binary images, the retrieved images were further
binarized using thresholds determined based on their histograms. Here each retrieved binary
image exhibited two peaks with intensity values in the vicinities of ‘0’ and ‘1’ in the histogram,
and the intensity value corresponded to the valley bottom between the two peaks was chosen as a
threshold.

Table 1. Multimode fibers used for the image retrieval experiments.

Fibers
Core diameter

(µm)
Cladding

diameter (µm)
Numerical
aperture

Length
(m) Mode counta

Output
pixels count

Fiber-105-0.22 105 125 0.22 1 9304 200×200

Fiber-200-0.22 200 220 0.22 1 33756 360×360

Fiber-200-0.50 200 220 0.50 1 174360 500×500

aThe mode count is calculated via Nmode = (πdNA/λ)2/2 [33], where d is the diameter of the fiber, λ is the wavelength of
the light.

2.4. Numerical simulations

As the DMD with our method can provide only binary amplitude modulation, numerical
simulations were performed with a custom MATLAB program to further study the capability of
this RVITM-based method for retrieval of grayscale images. A random, complex-valued TM
with 64× 64 input pixels and 200× 200 output pixels was generated with phases and amplitudes
of the TM obeying a uniform and a Rayleigh probability density function between 0 and 2π,
and 0 and 1, respectively [5–7]. Output speckle patterns were then calculated using the formula
Im = |

∑
n=N tmnEn |

2, where Im is the intensity at the mth pixel in the output speckle. tmn is the
complex-valued transmission constant in the generated TM [5,29]. En is the light field at the
input patterns which was either 1 or 0. Fiber characterization and image reconstruction were
performed using the methods presented in Section 2.1. Characterization of the RVITM using
the simulated TM was implemented via Eqs. (1)–(3). To evaluate the performance of the image
retrieval, two representative binary images and 3 greyscale images (intensity scaled between
0–255) with a pixel count of 64× 64 were used as input test images. Retrieved images were
achieved via Eq. (4).
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3. Results

The impact of J with input images with a constant pixel count (1024) is shown in Fig. 2.
The correlation coefficient increased rapidly to ∼90% with J from 32 to 384 and remained
largely consistent with J in the range of 384 to 896. With J increasing from 896 to 1024, the
correlation coefficient declined rapidly, which can be attributed to the loss of low spatial frequency
components due to the diffraction of the DMD micromirrors.

Fig. 2. Impact of switched ‘ON’ pixels count on the performance of image retrieval. (a)
Examples of retrieved 1024-pixel images with varying switched ‘ON’ pixels count from 32 to
160, 288, 416, 544, 672, 800 and 928 (left to right). (b) The correlation coefficients between
the retrieved images and their ground truths versus the switched ‘ON’ pixels count. Data
represent average values across 64 input patterns with the same J, and error bars represent
standard deviations.

The impact of the total input pixel count on the performance of image retrieval is shown in
Fig. 3. With the same optical fiber, the correlation coefficient declined with the increase of input
pixel count. For example, with the MMF having a core diameter of 200 µm, and a NA of 0.22, the
correlation coefficients declined from 99.44% to 76.81% with the increase of image pixel count
from 8×8 to 64×64. The core diameter and numerical aperture of an MMF also had significant
impact on the retrieved image quality, which can be attributed to the impact of the number of
supported transverse modes in the MMFs. MMFs with larger numbers of supported transverse
modes were able to transmit images with larger input pixel counts. More examples of retrieved
images with ground truths with different input pixel counts and through different MMFs can be
found in Figs. 7 and 8 in the Appendix. Image retrieval of the same image with different levels
of background noise was shown in Fig. 9 in the Appendix. The computation time for RVITM
estimation increased with the increase of both the input and output pixel counts (N and M). For
example, with a desktop PC (Intel i7 8700, 3.2 GHz, 16 GB Memory), when N and M increased
from 32×32 and 360×360 (Ø200 µm, NA=0.22, length= 1 m) to 64×64 and 500×500 (Ø200
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µm, NA=0.50, length= 1 m), the computation time for RVITM estimation increased from ∼8 s
to ∼240 s, respectively.

Fig. 3. Impact of input pixel count and number of supported transverse modes in multimode
fibers (MMFs). (a) Retrieved images with the same ground truth and different input pixel
counts through an MMF with a core diameter of 200 µm and a numerical aperture of 0.22.
Retrieved images with the same ground truth and the other two MMFs can be found in
Fig. 7 (Appendix). (b) Evolution of image retrieval performance with different MMFs and
input pixel counts. Data represent average values across 64 input patterns with the same
input pixel count, and error bars represent standard deviations. Fiber-105-0.22, Ø105 µm,
NA=0.22, length= 1 m; Fiber-200-0.22, Ø200 µm, NA=0.22, length= 1 m; Fiber-200-0.50,
Ø200 µm, NA=0.50, length= 1 m.

As shown in Fig. 4, the fidelity of the retrieved images was weakly dependent on the input
patterns: correlation coefficients between the retrieved images and the input ground truths varied
from 91.76% for a handwritten digit to 97.62% for a random binary pattern. With a higher number
of input pixels (64×64), the correlation coefficient varied from 74.84% for the handwritten digit
to 90.91% for the random binary pattern, respectively (Fig. 5). Two videos showing retrieved
images from a series of output speckles through the same fiber are shown in Visualization 1 and
Visualization 2. After binarization, the correlation coefficient increased for all type of input
images and with the majority of the input images, the correlation coefficients were greater than
99%.

With numerical simulations, all the binary and grayscale images were retrieved with correlation
coefficients greater than 94% (Fig. 6). However, the correlation coefficients for binary images
were slightly higher than those for grayscale images.

https://doi.org/10.6084/m9.figshare.12254228
https://doi.org/10.6084/m9.figshare.12254225
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Fig. 4. Image retrieval results with different types of inputs with an input pixel count of
32×32. Retrieved images from corresponding output speckle patterns were obtained from a
step-index multimode fiber with a diameter of 200 µm, and numerical aperture of 0.22, and
compared to their ground truths. The input pixel counts were 32×32. More examples of
image retrievals of handwritten digits can be found in Fig. 8 in the Appendix.

Fig. 5. Image retrieval results with different types of inputs with an input pixel count of
64×64. Retrieved images from corresponding output speckle patterns were obtained from a
step-index multimode fiber with a diameter of 200 µm, and numerical aperture of 0.22, and
compared to their ground truths.
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Fig. 6. Numerical simulations of image retrievals with binary and grayscale images. The
grayscale head CT images (ground truths) were adapted from the MedNist dataset [44]. Each
input ground truth and retrieved image comprised 64×64 pixels while each speckle pattern
comprised 200×200 pixels.

4. Discussion

In this work, we reported, for the first time to our knowledge, a reference-arm-free and high-speed
method to calculate a RVITM that links the input and output intensity distributions of an MMF
based on an assumption of a pseudo-linearity between input and output intensities. We studied
the conditions of the pseudo-linearity experimentally by investigating the impact of several
key parameters to the performance of image retrieval including image pixel count, fiber core
diameter and numerical aperture. The results suggest that the fidelity of the image retrieval is a
function of the percentage of “1”-valued input pixels to the total number of input pixels. One
possible explanation for this dependency is that the characterization input patterns admit a sparse
representation of images with 50% pixels ‘ON’ and so the linear approximation is more suitable
for retrieving input images with a similar intensity distribution as those used in characterization.
Furthermore, it is evidenced that retrieving input images with a larger number of pixels requires
optical fibers supporting more transverse modes. This could be interpreted as when more modes
are supported by the fiber, each basis function might tend to use a less overlapping selection
of those modes and therefore the optical system has a better linearity. We further investigated
the pseudo-linearity and subsequent image retrieval with numerical simulations. The results
confirmed the existence of the pseudo-linearity with the numerical models used in the simulations,
which suggests that the pseudo-linearity holds true under the conditions of a complex-valued TM
with random phases and amplitudes obeying uniform and Gaussian distributions, respectively. It
also suggests that our RVITM-based method could be applicable for other types of complex-media
including optical diffusers and multicore fiber bundles, for which their TMs have a similar phase
and amplitude distributions as those in our simulations. However, further investigations are
required to better understand the pseudo-linearity and its dependency on experimental conditions.
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In this study, a pulsed laser was used to demonstrate the capability of our RVITM-based
method for image retrieval. It is worth noting that we have previously tested image retrieval with
the same method and setup using a continuous wave laser (532 nm, 4.5 mW, Thorlabs, New
Jersey, USA). The resulting correlation coefficient between retrieved and input images (∼ 93%)
were only marginally lower compared to the results obtained with the nanosecond-pulsed laser
used in this study. This could be attributed to the short length of the fibers (1 m) which limited
the temporal spreading of the output speckles to nanosecond-range, comparable to the pulse
duration of the laser. Further reducing pulse duration and/or increasing fiber length is expected
to increase the temporal spreading of the output speckles that may have a strong impact on the
linearity of the system. This, however, requires further investigations.
Compared with other existing methods, our approach has a number of distinct advantages.

First, the fiber characterization process with our method requires both a short time for calculation
and data acquisition. In contrast, both the training process of deep learning-based methods
and model-based algorithms rely on iterative optimization that is usually very time-consuming
(several hours). Furthermore, they require large training datasets and hence a relatively long data
acquisition time. This is problematic when repeated fiber characterization process is required
due to speckle decorrelations. Second, the performance of image retrieval with our method is
weakly dependent on the types of input images. In contrast, deep learning-based approaches
are most likely to have a better performance for images that belong to similar classes to those
of the training datasets [34–41]. Although a recent study [35] has demonstrated that deep
learning networks were able to retrieve images through a MMF that did not belong to the class of
images used for training, this success was still limited to simple images. Last, the experimental
setup with our method is simpler compared to those of holographical methods which usually
require optical reference arms that increase the complexity and can degrade the stability of
the system. Several algorithms were reported for TM characterization in reference-arm-free
setups [14,24,29,30,45–48], however, these works were mainly focused on producing incident
wavefronts based on the achieved TM to focus light through fibers or diffusers. The lack of
phase information in output speckles made it challenging to retrieve images directly from the
measured TM and speckle intensities. As the RVITM relies on the approximation of a linear
relationship, the accuracy of image retrieval with our method is likely to be lower than those of
TM-based methods. However, our method could benefit from a higher temporal stability owing
to a reference-arm-free setup, as such further studies are required to compare the performance of
RVITM, TM, model-based and deep learning methods with the same MMFs and the same test
images.
Furthermore, similar to other methods, our method also suffers from speckle decorrelations

induced by fiber deformations. One possible mitigation solution is to minimize fiber deformation,
e.g. the MMF could be integrated within a rigid medical catheter or needle for biomedical
applications. Significant progress has been achieved in recent years to tackle this challenge.
In 2015, Plöschner et al., reported that with the knowledge of the fiber shape, TM of the
fiber can be corrected to compensate deformations-induced speckle decorrelations [1]. TM
characterization using reflected light from metasurface reflector stacks coated on the distal fiber
tip was also proposed for solving the bending problem [49]. In 2018, Zhao et al., developed a
glass-air disordered fiber, which allowed image reconstruction from output speckles with a deep
learning-based method even when the fiber was bent by 90° after characterization [41].

In this paper, the capability of retrieving binary images was demonstrated with experiments and
numerical simulations, while the capability of retrieving grayscale images was only demonstrated
with numerical simulations. This is due to the DMD used in this work only allowed binary
amplitude modulations. In future studies, a spatial light modulator such as the ones in previous
studies [34,42] or advanced methods with a DMD [50,51] that provides grayscale amplitude
modulations will be used to study the capability of our method for retrieving grayscale images.
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The potential of a scanner-free endoscopy system based on a single MMF will be exploited,
in which the same MMF could be used for both delivering illumination light and collecting
reflected light from tissue target similar as that reported by Choi et al., [31]. A pre-characterized
RVITM could then be used for recovering tissue images from the reflected speckles captured
by a camera at the proximal end of the fiber. Based on the results presented in this work, the
field-of-view and spatial resolution of the retrieved images depends on the core diameter and NA
of the fiber. For example, using a MMF with a core diameter of 200 µm and a NA of 0.22, the
highest spatial resolution that could be achieved with the proposed method can be estimated as
200 µm / 64

√
2=∼2.2 µm. MMFs with larger NAs could be used to further improve the spatial

resolution.

5. Conclusion

In conclusion, we developed a method to measure the light intensity transmission characteristics
for an MMF with a RVITM, and with this, light intensity distributions at the proximal end of the
fiber can be reconstructed from the measured light intensity distributions at the distal end. This
method enables a high-speed characterization of MMFs with a simple measurement setup and
thus could be useful for several applications in biomedical endoscopy and telecommunications.

Appendix

1. Additional image retrieval examples

Additional examples of image retrievals through different multimode fibers, and with different
input patterns are shown in Figs. 7 and 8, respectively.

Fig. 7. The results of image retrievals through three different fibers with the same ground
truth and varying total pixel counts. Top; Ø105 µm, NA=0.22, length= 1 m; Middle; Ø200
µm, NA=0.22, length= 1 m; Bottom; Ø200 µm, NA=0.50, length= 1 m.

2. Noise performance

To study the impact of noise to the performance of the RVITM-based image retrieval method,
different levels of simulated background noise were added to experimentally obtained output
speckles as Ioutput’= Ioutput + noise, and noise= f·u(Ioutput) ·χ, where u(Ioutput) refers to the mean
value of the measured output speckles, and χ is a matrix with the same size as the output speckles
and comprises random values that obey a normal distribution with a mean value of 1 and a
standard deviation of 1. f is a parameter that was varied from 0 to 5 resulting in Ioutput’ with
signal-to-noise ratio (SNR) varied from 1 to 0.2. Here we define the SNR as the ratio of the
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Fig. 8. Some examples of image retrievals through a multimode fiber with handwritten
digits with different total pixel counts. The fiber has a core diameter of 200 µm, a NA of
0.22, and a length of 1 m.

average value of Ioutput to the standard deviation of the noise. Retrieved images for different SNR
levels are shown in Fig. 9. While the correlation coefficient declined with the decrease of SNR,
high fidelity images were achieved even when there was a strong background noise.

Fig. 9. Impact of noise to the performance of the RVITM-based image retrieval method.
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